
ROBOTICS

Application manual
Automatic Path Planning

Trace back information:
Workspace Main version a631
Checked in 2024-11-29
Skribenta version 5.6.018

Application manual
Automatic Path Planning

Document ID: 3HAC092826-001
Revision: A

© Copyright 2024 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2024 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...

91 Safety

112 Description of Automatic Path Planning
112.1 Automatic Path Planning ..
132.2 Communication with the server ..
162.3 Network security ...

173 Setting up Automatic Path Planning
173.1 Installation ...
193.2 Adding robots and attachments ...
213.3 Setting up obstacles ..

234 Reference information
234.1 Robots and frame numbering ..
254.2 Kinematics ...
264.3 Collision body geometries ...
274.3.1 Mesh ..
294.3.2 Voxelized environment (point cloud) ...
304.4 Collision checking ...
314.5 Path planning ...
314.5.1 Path characteristics ...
334.5.2 Minimum allowed distance ..
364.5.3 Goals ..
394.5.4 Pick-and-place planning ...

45Index

Application manual - Automatic Path Planning 5
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual describes the functionality of the software Automatic Path Planning.

Note

It is the responsibility of the integrator to conduct a risk assessment of the final
application.
It is the responsibility of the integrator to provide safety and user guides for the
robot system.

References

External references
• gRPC, 2022. Available:

https://grpc.io/
• gRPC in .Net. Available:

https://learn.microsoft.com/en-us/aspnet/core/tutorials/grpc/grpc-
start?view=aspnetcore-7.0&tabs=visual-studio

User documentation from ABB Robotics

Document IDReference

3HAC066559-001Application manual - Functional safety and SafeMove

3HAC032104-001Operating manual - RobotStudio

3HAC065038-001Technical referencemanual - RAPID Instructions, Functions
and Data types

Revisions

DescriptionRevision

First edition.A

Application manual - Automatic Path Planning 7
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

Overview of this manual

https://grpc.io/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/grpc/grpc-start?view=aspnetcore-7.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/tutorials/grpc/grpc-start?view=aspnetcore-7.0&tabs=visual-studio

This page is intentionally left blank

1 Safety
Risk assessment

It is the responsibility of the integrator to conduct a risk assessment of the final
application.

Verify the safety functions
Before the robot system is put into operation, verify that the safety functions are
working as intended and that any remaining hazards identified in the risk
assessment are mitigated to an acceptable level.

Application manual - Automatic Path Planning 9
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

1 Safety

This page is intentionally left blank

2 Description of Automatic Path Planning
2.1 Automatic Path Planning

Introduction to Automatic Path Planning
The Automatic Path Planning is a self-contained path planning server built for
Windows and Linux. The software addresses both offline and online applications
that can benefit from kinematics, collision-checking, and automatic path planning
services.

CAUTION

Automatic Path Planning will produce collision-free paths under the assumption
that the virtual model is an accurate representation of the robot cell, and that the
kinematic model of the robot has no errors. It is up to the user verify the accuracy
of the model and provide Automatic Path Planning with safety margins that are
large enough to compensate for errors in the kinematics and the virtual model.
SafeMove can be used to set up safe zones for areas where people can be
present, or obstacles that are not represented in the virtual model.

After adding a robot, attachments to the robot (for example, a robot tool from a
CADmodel), obstacles fromCADmodels or point clouds, the server will, on request,
return a collision-free path from a starting target (RobTarget or JointTarget in
RAPID) to a goal target. The server will try to find the shortest path from the start
to the end. The returned path is a sequence of targets that are to be sent to the
robot controller. The path does not have a speed parameter, as the server is a
geometrical path planner and has no notion of motion time. Since the path is
optimized in the joint space it is singularity-free. Furthermore, the zones of the
targets are optimized to be as large as possible so that the motion is smooth,
efficient, and fast.
The time needed by the server to generate a path depends on the complexity of
the problem, the number of obstacles, and the available CPU performance, and
can range from a few tens of milliseconds to some seconds. The server uses
multi-threading to speed-up computations, and the user can configure the number
of threads that can be used by the server.

The API
The file cfree.proto is the specification of the server API. The available services
are listed in the file.
The API uses lowerCamelCase for server queries, UpperCamelCase for message
types, and snake_case for message fields.

Supported robots
The following robots are supported by the path planning server:

• Six DOF elbow IRB robots (Elbow), for example, IRB 5710, CRB 1100
• Six DOF parallel rod robots (ParallelRod), for example, IRB 8700

Continues on next page
Application manual - Automatic Path Planning 11
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.1 Automatic Path Planning

• GoFa robots (ElbowWristOffset), CRB 15000
• Single arm YuMi (RedundantRobots), IRB 14050

The name within parentheses is the corresponding enum name in the proto file.
The difference between the Elbow type and the ElbowWristOffset type is that
the former has a spherical wrist, while the latter has a z offset in the wrist.
Paint robots are not supported.

12 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.1 Automatic Path Planning
Continued

2.2 Communication with the server

Introduction
The Automatic Path Planning is using gRPC, an open-source high performance
Remote Procedure Call (RPC) framework from GoogleTM that can run in any
environment. The client can be implemented in any language supported by the
gRPC including C++, C#, Python, and Java. The server has no relation to
RobotWare.
The following figure shows an overview of the server architecture. Tests show
communication overhead with gRPC to be around 1ms for most services. The
latency will depend on the message size. Large message loads (for example,
sending a large point cloud) will result in higher latencies. Messages in gRPC are
encoded in binary, using Google Protobuf.

xx2400001455

Client API generation
gRPC provides tools to automatically generate interfaces in several supported
languages from a specification in proto format. The provided cfree.proto file
can be used to generate the API interface to the server automatically. After that,
setting up a client to establish communication with the server requires little effort.
The remaining work for integrating the Automatic Path Planning in an application
consists of converting data types from the application to the proto messages,
constructing queries, calling the services and parsing the received response.
A fully documented Python client with 3D visualization capabilities is provided with
the server.

Continues on next page
Application manual - Automatic Path Planning 13
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.2 Communication with the server

Network recommendations
The default behavior for the path planning is to listen on the port
localhost:50051. It is recommended to not communicate with the Automatic
Path Planning server over a remote connection. Therefore, the server and the client
should be executing on the same computer.

Server usage in parallel
The Automatic Path Planning core and its interfaces are designed to be thread
safe, therefore multiple clients can access the server simultaneously. However, in
current form, functions such as collision-checking and path-planning require
resources that cannot be used in parallel and are therefore access-locked during
execution of those services. Therefore, there is little benefit in calling
collision-checking and path planning services in parallel to gain compute time
advantage. However, multiple instances of the server (with different IP and/or port
of course) can be executed in parallel on the same system. Note that the path
planning is done in multiple threads.

Visualization
CurrentlyAutomatic Path Planning does not provide native visualization tools. This
is in part because of the various use-cases for which it is designed, which makes
having a visualization concept that can be integrated in all these applications
infeasible. The path planning server does however provide services to retrieve all
the required data for visualization of the robot, obstacles, and paths. These services
are:

• getObstacleCollisionBodies: To retrieve the obstacles (all obstacles
or those only active for a specific robot) as triangular mesh objects.

• getRobotCollisionBodies: To retrieve the robot links and attachments
(tools, load) at a given target as triangular mesh objects.

• getVoxels: To retrieve the voxel-based representation, if present.
• collisionCheck: To perform collision checks at one ormore given targets.

It returns a list of robot links/attachments and obstacles that are in collision,
so that appropriate visualization such as highlighting colliding links/obstacles
can be done.

• interpolatePath: To interpolate a path consisting of a series of targets
with zones. This, together with the forwardKinematicsTCP service, can
be used to accurately visualize the TCP trace of, for instance, a MoveAbsJ
path with zones.

• forwardKinematics: To retrieve the pose of each robot link at a given
target, to animate the robot links (which in turn are retrieved using the
getRobotCollisionBodies service) along a path of targets.

Continues on next page
14 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.2 Communication with the server
Continued

Logging of server requests
For development and debugging of online applications, the requests-logging service
can be utilized to enable the complete logging of all called services. When
requests-logging is enabled, a file is produced by the server that can be used later
to replicate all the calls to the server. This includes adding robots and obstacles.
Therefore, requests-logging should be enabled before any other service is called
so that the added robot and obstacles are also logged. Furthermore, parsing
functions are provided in the Python client package to read a log file and replicate
the scenario.

Application manual - Automatic Path Planning 15
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.2 Communication with the server

Continued

2.3 Network security

Network security
This product is designed to be connected to and to communicate information and
data via a network interface. It is your sole responsibility to provide, and
continuously ensure, a secure connection between the product and to your network
or any other network (as the case may be).
You shall establish andmaintain any appropriatemeasures (such as, but not limited
to, the installation of firewalls, application of authentication measures, encryption
of data, installation of anti-virus programs, etc) to protect the product, the network,
its system and the interface against any kind of security breaches, unauthorized
access, interference, intrusion, leakage and/or theft of data or information. ABB
Ltd and its entities are not liable for damage and/or loss related to such security
breaches, any unauthorized access, interference, intrusion, leakage and/or theft
of data or information.

16 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

2 Description of Automatic Path Planning
2.3 Network security

3 Setting up Automatic Path Planning
3.1 Installation

Overview of the installation
1 Download I the distribution package for Automatic Path Planning from lib-

rary.abb.com
2 Install the software on a device.
3 Activate the license.
4 The distribution package contains some examples that can be used for testing

and getting started.
I https://library.abb.com/r?cid=9AAF630578

Activating the license key
The licensing for Automatic Path Planning works in a similar way as RobotStudio.
The license is connected to the device, allowing Automatic Path Planning to run
on it. Once a key has been used, it cannot be used on any other device.

Activating over internet (preferred)
1 Open a terminal/command line prompt on the target device in the install

directory for Automatic Path Planning.
2 Initialize the license system: cfree -init

This is done once per device.
In a Windows multi-user environment this should be done from an admin
prompt.

3 Activate the device: cfree -a [activation-key]
You should get a response stating that the license was successfully activated.

Activating without internet connection
1 Open a terminal/command line prompt on the target device in the install

directory for Automatic Path Planning.
Or type cfree -h for help on available command line parameters.

2 Initialize the license system: cfree -init
This is done once per device.
In a Windows multi-user environment this should be done from an admin
prompt.

3 Activate the device: cfree -a [activation-key]
You should get a response stating that the license was successfully activated.

4 Create a license request file: cfree -licrequest <key>
<file[.licreqx]>

5 Copy the file to a USB device or similar.
6 On a machine with internet connection, go to http://manualactiva-

tion.e.abb.com/
7 Upload the license request file.

Continues on next page
Application manual - Automatic Path Planning 17
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

3 Setting up Automatic Path Planning
3.1 Installation

https://library.abb.com/r?cid=9AAF630578
https://library.abb.com/r?cid=9AAF630578
http://manualactivation.e.abb.com/
http://manualactivation.e.abb.com/

8 Copy the returned license file to the USB device.
9 On the target device, import the license file: cfree -importlicense

<license-file>

You should get a response stating that the license was successfully activated.

Starting the server
1 Open a terminal/command line prompt on the target device in the install

directory for Automatic Path Planning.
2 Type cfree -unlock to start the server.
3 Type cfree -h for help on available command line parameters.

18 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

3 Setting up Automatic Path Planning
3.1 Installation
Continued

3.2 Adding robots and attachments

Adding robots
1 To add a robot, use the service addRobot.

The service returns an integer ID for the added robot, and a list of collision
body IDs (one for each robot link geometry) that can be used in robot-related
services like collision checking or path planning.

2 To get the parameters required for the robot, use the export functionality in
RobotStudio. This function exports a robot, and additional geometric objects,
to a file format that can be loaded by Automatic Path Planning.

3 The parameter min_dist_self_collision specifies how close the links
of the robots can get to each other before a self-collision is determined. This
can be important if there is uncertainty in robot attachments, for instance a
load picked up by the robot. As the load will be part of the robot, the minimum
self-collision distance parameter will dictate how close it can get to the robot
links. The minimum allowed value is 0.001 meters.

Adding robot attachments
After the robot is created, robot attachments can be added as collision bodies to
any frame of the robot. The collision bodies can be added with addCollisionBody
or addRobotTool.

1 To add a robot attachment with the service addCollisionBody, specify the
following parameters:

• robot_id

• frame_number (see Frame numbering on page 23)
• frame_offset is a pose that can be used to specify how the collision

body should be attached relative to the robot frame.
2 To add a robot tool with the service addRobotTool, specify the following

parameters:
• An optional name (to simplify debugging and coding). The default value

is tool0.
• frame_offset is a pose that can be used to specify how the collision

body should be attached relative to the robot frame. This corresponds
to tframe in the RAPID data type tooldata.

• An optional collision body modelling the tool.
3 The server returns an ID for the added tool that can be used in the

switchTool service.

Continues on next page
Application manual - Automatic Path Planning 19
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

3 Setting up Automatic Path Planning
3.2 Adding robots and attachments

Switching robot tool
It is possible to add multiple tools to a robot and switch between them using the
switchRobotTool service and the ID of the desired tool.

Note

The TCP of the switched tool will then be used in forward and inverse kinematics.
Any collision body of the tool will be taken into account in collision checking and
path planning.

Switching tools can be particularly useful in online applications, where the tool
addition (which may include costly convex decomposition) is done once and at
runtime tools are only switched.

20 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

3 Setting up Automatic Path Planning
3.2 Adding robots and attachments
Continued

3.3 Setting up obstacles

Adding a mesh obstacle
The service addCollisionBody can be used to add to the scene an obstacle or
a robot attachment that consists of a set of convex hulls. Alternatively,
generateConvexDecomposition can be used to send a generic mesh, from
which first the convex hull decomposition is performed, and the resulting convex
hulls are added as the collision body. In either case, a unique integer is returned
as the ID of the collision body that can be used in services such as
removeCollisisonBody or activateCollisionBody. A collision body can be
given a name, which is helpful in debugging and improves messages about
collisions that the path planning server might return. Note that the server will not
check or require that the provided name is unique.
The CollisionBody message has an optional field, min_dist_override, that,
if set, overrides the global minimum allowed distance to obstacles set by a
path-planning query. This is useful if the collision body represents an obstacle that
the robot is allowed/required to move closer to compared to other obstacles, for
example, a table or a fixture. The minimum allowed value for the field
min_dist_override is 0.001 m.
When an obstacle is added to the server, it is checked whether the obstacle is
within a sphere that approximates the workspace of the robot. If the obstacle is
outside the sphere, the obstacle will be ignored in collision checking of that robot.
If the geometry of the robot changes, this sphere-check is repeated for all added
obstacles, so that when for example a longer tool is added to the robot, a previously
ignored obstacle might become active because of being within the robot's
workspace.
In applications where there are multiple obstacles with the same geometry but at
different locations, it is recommended to add a single collision body to the
addCollisionBody and fill-in the optional replication_poses field with the
poses of the obstacles. This increases the efficiency of the service.

Tip

If defining several collision bodies, it is more efficient to define them all at once
with a single call to addCollisionBody than to call the service repeatedly for
each collision body.

Deactivating or removing a mesh obstacle
Use the service activateCollisionBody together with one or more collision
body IDs to activate or deactivate a collision body. A deactivated collision body is
ignored in collision checking and path planning.
It is also possible to remove a collision body from the scene if it is no longer needed
by using the service removeCollisionBody.

Application manual - Automatic Path Planning 21
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

3 Setting up Automatic Path Planning
3.3 Setting up obstacles

This page is intentionally left blank

4 Reference information
4.1 Robots and frame numbering

Introduction
A robot in Automatic Path Planning consists of a kinematic model and collision
bodies. A user must provide all the model parameters, together with the collision
bodies, to the path planning server when adding a robot.
See also Supported robots on page 11.

Frame numbering
The kinematic model for a robot consists of sequence of moving coordinate frames.
Each frame is numbered according to a convention that is specific to each robot
variant. When adding collision bodies that model robot links, each collision body
is attached to the corresponding frame using the frame number. The path planning
server uses the same frame numbering convention as the Collision Avoidance
functionality in RobotWare. See the following figure for an example of numbering
convention used for elbow robots. For the elbow robots the convention is easy to
remember: frame number i moves with joint i and frame 0 correspond to the base
frame.

xx2400001770

Continues on next page
Application manual - Automatic Path Planning 23
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.1 Robots and frame numbering

Robot mounted on linear axis
The Automatic Path Planning supports mounting any robot onto a gantry structure
consisting of up to three linear axes. This is useful if the robot is mounted on a
linear track motion or hanging from a gantry. The linear axes are specified using
the field gantry_params in RobotParameters.

Note

Possible self-collisions between the linear axes and the robot must be specified
in the field self_collisions in RobotParameters.

24 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.1 Robots and frame numbering
Continued

4.2 Kinematics

Introduction
Automatic Path Planning provides services for kinematics operations such as
forward and inverse kinematics. These services can be used to avoid the need for
communication with the robot controller and RAPID operations that may have a
high latency for an application running on a PC. The latency of using these services
will likely be dominated by the communication overhead of 1-2 ms per message,
where amessage can contain an array of targets as inputs to kinematics operations.

Forward kinematics
There are two services for forward kinematics.

DescriptionService

Expects an array of JointTargets and returns an array of
RobTargets, one per each JointTarget and ordered as the
sent array of JointTargets. It also returns an array of statuses,
reporting the success of the forward kinematic operation.
Forward kinematics can fail, for example, if the JointTarget
is outside the joint limits of the robot.

forwardKinematicsTCP

Expects an array of JointTargets and returns an array of
pose arrays, one pose per robot joint. This service can be
used along with the getRobotCollisionBodies service
to visualize a robot at a given JointTarget.

forwardKinematics

Both services also return a status per target, as forward kinematics can fail for
certain robot variants.

Inverse kinematics
The inverseKinematics service expects an array of RobTargets and returns an
array of JointTargets and an array of statuses ordered as the sent RobTarget array.
When inverse kinematics fails for a target, the status will specify the type of failure
as one of the following:

• ERR_INVKIN_POS_OUT_OF_REACH: RobTarget is outside of robot reach
• ERR_INVKIN_WRIST_SINGULARITY: RobTarget is in wrist singularity
• ERR_INVKIN_WCP_SINGULARITY: RobTarget is in shoulder singularity
• ERR_STATE_LIMITS: No solution was found within robot joint limits.

Note

7 DoF and the GoFa robots rely on iterative inverse kinematics which will have
a higher latency than other robots.

Application manual - Automatic Path Planning 25
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.2 Kinematics

4.3 Collision body geometries

Introduction
In Automatic Path Planning, the physical world is represented as sets of collision
bodies. Both robot links and obstacles are represented with collision bodies. Each
collision body has a unique integer ID that is generated when the body is added
to the server. A collision body includes a geometrical representation that is used
in collision checking.
There are two types of geometrical representations available, mesh and voxels.
Collision checking with mesh geometries is computationally very efficient and
should be considered as the best option when possible. However, when dealing
with an unstructured environment where perception is involved, a voxel-based
representation is used.

Continues on next page
26 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.3 Collision body geometries

4.3.1 Mesh

Introduction
Amesh geometry, or to be more precise a triangular mesh geometry, is a common
collision geometry representation that consists of vertices (float vector of x, y, and
z in meters) and triangles (a triangle is represented by a vector of 3 integers, where
each integer represents the index of a vertex). The proto message Mesh consists
of two arrays:

message Mesh

{

repeated double vertices = 1;

repeated int32 triangles = 2;

}

The vertices array is the concatenation of all the vertices' positions, that is, [v0_x,
v0_y, v0_z, v1_x, v1_y, v1_z, …]. The triangles array contains the
concatenation of all the triangles. Each triangle consists of 3 vertex indices, for
example, [v0, v1, v2, v9, v3, v5, ….]. For instances, the 8 vertices and
12 triangles of a 0.2 m cube centered at the origin can be:
Vertices: [-0.1, -0.1, 0.1, 0.1, -0.1, 0.1, -0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -0.1, -0.1, -0.1, 0.1,
-0.1, -0.1, -0.1, 0.1, -0.1, 0.1, 0.1, -0.1]
Triangles: [0, 1, 2, 1, 3, 2, 2, 3, 7, 2, 7, 6, 1, 7, 3, 1, 5, 7, 6, 7, 4, 7, 5, 4, 0, 4, 1, 1, 4,
5, 2, 6, 4, 0, 2, 4]

Convex decomposition
Although it is possible to check whether two generic mesh geometries are in
collision, collision checking can be performed more efficiently if the meshes are
convex. Therefore, Automatic Path Planning uses an approximation of generic
mesh geometries referred to as convex decomposition, where a generic mesh
object is approximated by a number of convex hulls. The higher the number of
convex hulls, the tighter the approximation will be, as shown in the following figure.
The service generateConvexDecomposition enables the users to send a generic
mesh object, along with an approximation level specified by the desired number
of convex hulls and receive an array of mesh objects, each representing a convex
hull.

xx2400001456

Three convex decompositions of a genericmesh shown on the right, with increasing
number of convex hulls (1, 6, 32).

Continues on next page
Application manual - Automatic Path Planning 27
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.3.1 Mesh

Practical notes
Note that a higher number of convexmembers will result in longer collision checking
times per obstacle. Therefore, use the lowest number of convex hulls that suits
the application requirement. Note that this is especially important for robot
attachments (for example, robot tool) because any robot collision geometry will
have to be checked against all the obstacles and a robot attachment with more
than a few convex hulls can have a significant impact on planning time.
The convex decomposition algorithm is rather time consuming andmust be avoided
in real-time applications. The higher the accuracy of the decomposition, the longer
the procedure will take. It is recommended to use the Automatic Path Planning to
generate convex decomposition and save the results to disk, such that at runtime,
the decomposed collision geometry can be set directly and avoid calling the convex
decomposition service.

28 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.3.1 Mesh
Continued

4.3.2 Voxelized environment (point cloud)

Introduction
In some applications the CAD model of the robot environment (or parts of it) is
either not available or not possible to design and localize in advance. In these
cases, a vision system can be used instead to generate a point cloud of the robot
workspace. To address such applications, the path planning server uses a voxelized
representation of point clouds that reduces collision checking computations. A
voxel is the 3D counterpart of a pixel, and therefore shaped as a cuboid. The voxel
representation of a shape is a discretized version of the geometry. The smaller the
size of voxels, the more accurate the discretization will be, but also themore costly
memory/compute requirements.

Sending point clouds
Only one collision body with voxels is allowed at a time. Sending a new voxelized
environment overwrites a previously sent one.
There are 2 ways to send point clouds to the automatic path planning server:

• Point cloud: In this approach the x-y-z coordinates of each point are sent to
the server. Although this is the most straight forward approach, when a large
number of points are present, the size of the message to the server can
become large which increases communication latencies.

• OcTree: An OcTree (Octant Tree) is a tree data structure in which each
internal node has exactly eight children. Octrees are most often used to
partition a three-dimensional space (a cube) by recursively subdividing it
into eight octants. Using OcTree, the parts of the workspace that are empty
can be efficiently represented, see the following figure. Furthermore, using
this encoding the message's size can be greatly reduced, so less time is
spent on communication.

xx2400001457

An example of point cloud, voxel, and voxel OcTree representations.

Application manual - Automatic Path Planning 29
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.3.2 Voxelized environment (point cloud)

4.4 Collision checking

Check for collision at targets
Use the service collisionCheck to check whether the robot is colliding with itself
or with an obstacle at the provided array of targets. The service replies with an
array of CollisionCheckData, with one element for each specified robot target.
The returned information includes details such as which robot collision body is
colliding with which obstacle collision body. If a voxel-based representation is
used, then a list of voxels in collision with the robot is also returned.
The minimum-distance between each colliding pair is also returned. If the objects
are penetrating, then the reported distance is zero, so no negative values.
A min_distance_to_obstacles parameter can be provided, to specify below
which link-obstacle distance that an obstacle collision is identified. The tolerance
for self-collisions is determined by the parameter min_dist_self_collision,
which is set by the service addRobot. For information about minimum distances,
see Minimum allowed distance on page 33.

Path collision check
Similar to collision check at targets the PathCollisionCheck service can be
used to check collision status of a list of MoveCommand path. In contrast to the
collision check, the response includes only a status per path that signifies whether
the path is collision-free or not and no more details are provided.

30 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.4 Collision checking

4.5 Path planning

4.5.1 Path characteristics

Introduction
The purpose and main service of Automatic Path Planning is to generate
collision-free paths for point to point or pick and place tasks. The service relies on
efficient algorithms developed to produce optimal paths (as in shortest path) within
a short computation time. In the following we discuss the characteristics of path
planning in Automatic Path Planning.

MoveCommand-based
Collision-free paths found by Automatic Path Planning comprise Move commands
(MoveAbsJ for point-to-point planning, and MoveAbsJ and MoveL for pick and
place planning). These commands can be directly converted to the corresponding
RAPID instructions and sent to the robot controller to benefit from the superior
motion and accuracy performance offered by ABB robots.

Optimized zones
The generated joint space path includes the largest collision-free zone sizes per
JointTarget. This unique feature of the path planning server leads to paths that
are highly smooth (see the following figure) and have faster cycle time and
potentially lower energy consumption.

xx2400001458

Short lengths
The path planning objective is to find the shortest possible collision-free path from
start to goal. However, it cannot be guaranteed that the globally shortest path can
be found within a limited time. The path length is generally improved by increasing
optimality_effort, but the planning time will then increase.

Continues on next page
Application manual - Automatic Path Planning 31
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.1 Path characteristics

Joint space
The collision-free path returned by Automatic Path Planning is an array of
JointTargets each with a zone size, to be sent to the controller by the user as a
series of MoveAbsJ instructions. This means that the path is singularity free.
Furthermore, in most cases, the shortest joint space path can lead to smoother
and faster motion.

No redundant via points
AnAutomatic Path Planning path is processed to have shorter length, while having
fewer number of via points. As a result, redundant via points are removed when it
is possible to make a shortcut between non-consecutive points.

32 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.1 Path characteristics
Continued

4.5.2 Minimum allowed distance

Introduction
To ensure a safe distance in the collision-free path planning, a parameter called
min_distance_to_obstacles can be set. This parameter guarantees that none
of the robot's links or attachments come closer to obstacles than the specified
distance while moving along the path. It is important that the start and goal targets
also adhere to this minimum distance. Otherwise, the server will return a collision
error. To avoid numerical issues during collision checking, the smallest allowed
safety margin is 1 mm.
To allow for more granular control over the safety margin, when adding obstacles
or robot attachments such as tools and loads, a
min_allowed_distance_override parameter can be provided. In such cases
when checking the collision state of the specified obstacle or robot attachment,
the larger of the override and the global min distance are chosen. This is visualized
in the right hand figure, the obstacles from left to right have none, 50 mm, and 100
mm set as their min_allowed_distance_override parameter when they are
added to the server. When a path planning query with
min_distance_to_obstacles of 2mm is sent to the server the path is generated
such that the robot links do not get closer than 2, 50, and 100 mm respectively to
the obstacles from left to right.

xx2400001460

On the right hand figure, the obstacles from left to right have none, 50 mm, and
100 mm set as their min_allowed_distance_override parameter when they
are added to the server.

Path planning computation effort and duration
Finding an optimum path is an optimization problem may take infinite time. The
automatic path planning server provides four parameters that can be used to shape
the computational effort spent on a path planning query.

• Number of threads: The automatic path planning server can use multiple
threads to speed up the planning computations. It is recommended to use
at least 4 threads.

• Optimality effort: A value between 0 and 1 that specifies how much
computational effort should be spent on finding an optimal path (referred to

Continues on next page
Application manual - Automatic Path Planning 33
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.2 Minimum allowed distance

as "best path"). For online applications where computation time is limited a
value of 0.1 is recommended. For offline applications, a value of 0.5 is
recommended.

• Timeout: The path planner has internal criteria for having found a
reasonably-optimal path. When the timeout is expired, when the reasonably
optimal criteria are met, the server does not search anymore and returns the
found path.

• Worst-case timeout: If the path planner's criteria for having found a reasonably
optimal path are not met by the time the timeout has expired, the server will
search until either a reasonably optimal path is found, or the expiration of
timeout_worst_case is reached.

The following figure shows five possible outcomes of a path planning query. The
timeout and optimality effort parameters should be set so that in most queries the
best path (defined based on the specified optimality effort parameter) is found
before the timeout is reached.

xx2400001771

It is not possible to provide a general rule of thumb for how long a planning query
may take to solve, as that depends on the complexity of the problem and the
performance of the available hardware. Complexity can arise from environment
representation (a large number of collision bodies, robot attachments with many
convex hulls, or a large number of voxels), or the difficulty of finding a collision-free
path (for example, very tight clearances at some point along the path from start to
goals).

xx2400001461

Two examples of planning duration with an optimality effort of 0.15 and 6 threads
utilized on an 8-core Core i7-8700 3.7 GHz CPU. Median planning duration for the

Continues on next page
34 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.2 Minimum allowed distance
Continued

cell on the left with around 27 obstacles (32 convex hulls) was 22 ms, and for the
cell on the right with 47 obstacles (314 convex hulls) was 74 ms.

Path orientation constraint
Some applicationsmay require that the orientation of the TCP be constrained along
the collision-free path. This is supported by Automatic Path Planning and can be
specified in a path planning query by setting the orientation constraint parameter.
An orientation constraint is specified as three cone angles in radians and in the
range of [0, Pi]. Each angle represents the allowed deviation from an axis of a
reference orientation. For example, a cone angle of 0.1 radian for Z means that
along the path the TCP z axis will not deviate more than 0.1 radians from the z axis
of the TCP at the start target of the planning query. If the cone angle is -1, then
there is no constraint on the corresponding tool-frame axis. If more than 2 axes
are constrained, then the orientation is fixed. This means, at via points the
orientation is equal to that of the start target, and the segments between via points
can have deviation in orientation up to the specified angles. Note that using very
small cone angles will increase the required planning time. Also note that while
Automatic Path Planning guarantees the path via points to be within the orientation
limits, it does not provide such a guarantee for the segments connecting the via
points. So at times, there may be some violation of the constraint when moving
from one via point to another.

xx2400001462

Representation of an orientation constraint described as αz radians around the z
axis of the tool.

Application manual - Automatic Path Planning 35
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.2 Minimum allowed distance

Continued

4.5.3 Goals

Introduction
A path planning query is often from the current position of the robot to a single
goal target. Automatic Path Planning allows for more elaborate goal definitions
that can simplify application logics and/or enhance motion performance or
efficiency.

Planning goal with RobTarget kinematic configuration
A RobTarget includes not only the Pose of the TCP but also the kinematic
configuration parameters that specify one of the multiple inverse kinematics
solutions. When specifying a RobTarget as a planning goal, the kinematic
configuration parameters can be left unspecified, such that the path planning
selects valid parameters that lead to the shortest path from the start.
If only the CFX parameter of the kinematic configuration is set, then cf1, cf4, and
cf6 will be chosen by the path planner. Note that the arm_angle parameter shall
always be set for 7 DOF robots. See Technical reference manual - RAPID
Instructions, Functions and Data types.

Multiple goal targets
A collision-free path planning query consists of a single start target and an array
of goal targets. The generated collision-free path will reach only one of the specified
goals, and often the goal that results in the shortest path from the start. Goals that
are kinematically infeasible or are not collision-free will be discarded. A visual
example is shown in the following graphic.

xx2400001463

Continues on next page
36 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.3 Goals

Example of planning with multiple goals. 5 goal targets are specified from which
3 are valid but 1 is in-collision, and 1 is out of reach. Automatic Path Planning will
find the shortest path connecting the start to a valid goal.

Goal regions
A goal can be turned from a fully specified robot target into a region. Automatic
Path Planning will try to find a valid target within the goal region that results in the
shortest path from the start. A valid target is kinematically feasible, collision-free,
and satisfies constraints such as path orientation constraint, if present. Goal regions
can optionally be specified in planning targets in addition to a reference
RobTarget/JointTarget. The following goal regions are available.

xx2400001772

• Position region: Specifies a box region centered at the TCP position of the
provided reference target. The path planner selects a valid goal with TCP
position within the box region and with the same TCP orientation as that of
the provided reference.

• Orientation region: Specifies a spherical cone around the provided reference
as shown in the figure. The path planner selects a valid goal with TCP position
matching that of the reference and an orientation that falls within the cone
region. The base angle parameter of the orientation region can be used to
limit rotations around the cone axis, for instance to protect cables/hoses of
flange attachments.

xx2400001773

• RobTarget Linear axes-mounted robots: Normally to plan for a linear
axes-mounted robot with a RobTarget, the position of the linear axis needs
to be specified. Automatic Path Planning allows for not specifying those

Continues on next page
Application manual - Automatic Path Planning 37
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.3 Goals
Continued

positions and only specifying the RobTarget of a goal. The path planner will
find linear axis positions that lead to the shortest path from the start.

When the application requirement allows for it, using goal regions can lead to
significant path length reduction as shown in the following figure.

xx2400001774

38 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.3 Goals
Continued

4.5.4 Pick-and-place planning

Introduction
The service planCollisionFreePickAndPlace is a powerful service that allows
for planning of multiple picks in one single call to the server.
Some applications such as pick-and-place include interacting with the environment.
For instance, picking up an object resting on a surface may mean that just before
picking the object, the robot needs to touch (that is, come in collision with) the
object. Also, just after the pick, the object, that is now part of the robot, will be in
collision with the resting surface. Therefore, pick motions are often defined by an
approach and retract targets above the object and commonly use a MoveL to reduce
the chance of unforeseen collision or disturbing the environment. Since a
collision-free path by definition cannot have a start or goals where the robot is in
collision with the environment, the automatic path planning server uses special
touch templates to pick or place objects. Furthermore, theremay be several possible
grasp poses to pick an object and a path planner should identify the best valid
pose among them. To address these 2 needs, the automatic path planning server
offers a pick-and-place planning service. A pick-and-place planning query provides
a high degree of flexibility by includes an array of touch queries, where a touch
query can specify picking or placing one or multiple objects. For instance, a single
pick-and-place query can specify picking 3 objects at once and placing them in 3
different locations and going to a final target and the path planner finds the
collision-free path between these steps.
A minimal pick-and-place query is shown in the following figure, where an object
is picked by the robot tool. The query includes a start target, and a single touch
query. The touch query includes the description of the approach and retract
movements (for example if the movement is linear Cartesian or in Joint space) and
the ID of the collision body to be picked at the single provided target. Upon receiving
such a query, the path planner generates valid approach/retract/pick targets, plans
a collision-free path from the start to the approach, and returns the overall path
from the start to the retract target to the user. The returned path is divided into
segments to allow for inserting other commands such as opening the gripper before
an approach segment, and so on. Note that, after the conclusion of the planning,

Continues on next page
Application manual - Automatic Path Planning 39
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning

the picked obstacle is attached to the robot and will be considered in collision
checking unless it is placed or removed by the user.

xx2400001464

Example 1
Example of picking an object where an obstacle collision body becomes a robot
attachment through approach and retract motions.

xx2400001778

Example 2
Example of a pick and place planning query with 5 touch queries where query 0
specifies picking 2 objects that are placed in queries 2 and 3. Queries 1 and 4
specify via points (targets that the robot should visit but that include no pick or
place).

Continues on next page
40 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning
Continued

Touch query specification
The following figure shows the structure of pick-and-place planning query and
result. A pick-and-place planning query comprises an array of touch queries that
describe the steps of a pick-and-place procedure. For instance, a two-step
procedure of picking an object from one location and placing it at another location
includes two touch queries, the first of which describes the pick step and the second
the place step.

The structure of pick and place planning query and response

xx2400001776

Contents of a touch query
• An array of PlanningTargets from which a single target will be selected

by the planner for the touchpoint. The selected target must be valid (in terms
of kinematics, collision criteria, and constraints). Furthermore, the planner
tries to find the target that results in the shortest overall path from the start.

• Optional approach and/or retract moves specified by parameters such as
length, direction, interpolation type (resulting in MoveL or MoveAbsJ) etc.
The planner tries to generate valid (in terms of kinematics, collision, and
constraints) approach/retract targets from the specification. Note that if no
approach is specified in the query, the planner attempts to plan a collision-free
path from the start to the touchpoint.

• An optional array of bodies to be picked (converted from an obstacle to a
robot attachment) at the touchpoint.

• An optional array of bodies to be placed (detached from the robot and
converted to an obstacle) at the touchpoint.

• Other parameters affecting the path planning and collision checking.

Continues on next page
Application manual - Automatic Path Planning 41
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning

Continued

Specifying multiple pick/place poses
In many pick and place applications it is possible to pick/place an object with
several poses. For instance, when multiple grasping candidates are provided by
a vision system for picking an item, all these poses can be provided to the Automatic
Path Planning server such that the best is selected for the path. A touch query
comprises an array of PlanningTargets each of which can specify multiple targets.
The planner stops searching after having generated a valid path to a planning
target starting from the first one. Therefore, the user can specify priority of provided
planning targets by their order in the touch_queries array.
A planning target can have an optionally specified tool id. For instance, it may be
possible to grasp a ring from the outside with an open gripper or from the inside
with a closed gripper. In such a case 2 planning targets can be provided, one with
the tool id of the closed gripper and the other with the tool id of the open gripper.
Several pick/place poses can be specified within a single planning target. To do
so one can provide a reference RobTarget or JointTarget and an array of poses,
referred to as tfs_in_tool for transformations in the tool coordinate frame. These
poses transform the reference's pose in the tool coordinate frame. An example is
shown below where the pick query has a planning target with 3 tfs_in_tool
shown as TF1, TF2, and TF3. TF1 is an identity transform and TF2 and TF3 are
translations along a single axis. As depicted in the image, only one of the transforms
results in collision-free pick and place targets.

Example
This is an example of specifying multiple tfs_in_tool. The query has 2 touch
queries, one for pick and the other for place. The pick query has a single planning
target with 3 tfs_in_tool, one of which results in robot colliding with the
environment at pick and the other results in collision at place. Therefore, the last
remaining transform is chosen by the planner.

xx2400001795

An advantage of providing the transforms relative to a reference is that the planner
can ensure a fixed place pose for the item if queried. That is, if it is of interest to
place the picked object always in the same location despite the pick tf_in_tool,
as shown to the left in the following figure, the
place_invariant_to_pick_tf_in_tool flag of the pick-and-place query should

Continues on next page
42 Application manual - Automatic Path Planning

3HAC092826-001 Revision: A
© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning
Continued

be set to True. When the flag is set to False the place target is not transformed as
shown on the right and the picked object is placed in different locations.

xx2400001465

Another way of specifying flexibility to improve robustness and/or productivity is
to use the goal regions field of a planning target. For instance, when dropping an
item in a bin the orientation around the vertical axis can be left free by specifying
a cone region as shown in the following example. Relaxed targets can result in a
significantly shorter path.

Example
Example of dropping an item in a bin while exploiting the cone region specification
to free the orientation around the vertical axis.

xx2400001778

In applications where several items are located at once, an array of pick-and-place
queries can be sent to the server in one request, one query per item. This can
reduce the communication overhead. Using the parameter
num_queries_to_solve, it can be specified after how many solved queries the
planning should stop. When set to 1, the planner starts from the first query and
returns as soon as one query is solved.

Continues on next page
Application manual - Automatic Path Planning 43
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning

Continued

Touch query collision checks
A touch query includes various collision checks to ensure no undesired collision
occurs while allowing for the touch between the picked item and the robot. These
collision checks are shown in the following figure. What can add further complexity
is different collision thresholds (allowed minimum distances) in the query.

• In the simplest case the min_distance_to_obstacles parameter of the
PlanningParameters of the pick-and-place query can be used for all
collision checks.

• Optionally, the user can set a different PlanningParameters for each touch
query that override the PlanningParameters of the pick-and-place query.

• Furthermore, the user can specify a different collision threshold to be used
at the touch target and the approach/retract segments. This can be specified
by setting the min_distance_at_touch field of a touch query. If set to a
negative value, no collision check is performed at the Touch target and the
retract/approach segments. This should be done with caution and only in
extraordinary cases.

Note that when min_distance_at_touch is specified, at the approach and retract
targets, the strictest collision criterionmust hold. For instance, if the pick-and-place
query has a min_distance_to_obstacles of 10 mm but the
min_distance_at_touch is set to 5 mm, at the approach target the stricter 10
mm threshold must hold for the path planning to succeed.

xx2400001779

44 Application manual - Automatic Path Planning
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

4 Reference information
4.5.4 Pick-and-place planning
Continued

Index
A
adding robot attachments, 19
adding robots, 19
Automatic Path Planning, 11

C
cfree.proto, 11
collision checking, 30
convex decomposition, 27
convex hulls, 27

D
distance, 33

F
forward kinematics, 25
frame numbering, 23

G
goals, 36
gRPC, 13

I
initializing, 18
installation, 17
inverse kinematics, 25

K
kinematics, 25

L
license keys, 17

linear axis, 24
logging, 15

M
mesh, 27
mesh obstacles, 21
min_allowed_distance, 33
minimum allowed distance, 33

N
network recommendation, 14
network security, 16

O
OcTree, 29

P
pick and place, 39
point clouds, 29
port, 14

S
starting, 18
supported robots, 11

T
touch, 41
typographic conventions, 11

V
voxels, 29

Z
zones, 31

Application manual - Automatic Path Planning 45
3HAC092826-001 Revision: A

© Copyright 2024 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
92
82
6-
0
0
1,
R
ev

A
,e
n

© Copyright 2024 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	1 Safety
	Risk assessment
	Verify the safety functions

	2 Description of Automatic Path Planning
	2.1 Automatic Path Planning
	Introduction to Automatic Path Planning
	The API
	Supported robots

	2.2 Communication with the server
	Introduction
	Client API generation
	Network recommendations
	Server usage in parallel
	Visualization
	Logging of server requests

	2.3 Network security
	Network security

	3 Setting up Automatic Path Planning
	3.1 Installation
	Overview of the installation
	Activating the license key
	Activating over internet (preferred)
	Activating without internet connection

	Starting the server

	3.2 Adding robots and attachments
	Adding robots
	Adding robot attachments
	Switching robot tool

	3.3 Setting up obstacles
	Adding a mesh obstacle
	Deactivating or removing a mesh obstacle

	4 Reference information
	4.1 Robots and frame numbering
	Introduction
	Frame numbering
	Robot mounted on linear axis

	4.2 Kinematics
	Introduction
	Forward kinematics
	Inverse kinematics

	4.3 Collision body geometries
	Introduction
	4.3.1 Mesh
	Introduction
	Convex decomposition
	Practical notes

	4.3.2 Voxelized environment (point cloud)
	Introduction
	Sending point clouds

	4.4 Collision checking
	Check for collision at targets
	Path collision check

	4.5 Path planning
	4.5.1 Path characteristics
	Introduction
	MoveCommand-based
	Optimized zones
	Short lengths
	Joint space
	No redundant via points

	4.5.2 Minimum allowed distance
	Introduction
	Path planning computation effort and duration
	Path orientation constraint

	4.5.3 Goals
	Introduction
	Planning goal with RobTarget kinematic configuration
	Multiple goal targets
	Goal regions

	4.5.4 Pick-and-place planning
	Introduction
	Example 1
	Example 2

	Touch query specification
	The structure of pick and place planning query and response
	Contents of a touch query

	Specifying multiple pick/place poses
	Example
	Example

	Touch query collision checks

	Index

